
61

Chapter

6
 6 USE CASES

The indispensable first step to getting the things
you want out of life: decide what you want.

—Ben Stein

Introduction

intermediate use
case topics p. 493

Use cases are text stories, widely used to discover and record requirements.
They influence many aspects of a project—including OOA/D—and will be input
to many subsequent artifacts in the case studies. This chapter explores basic
concepts, including how to write use cases and draw a UML use case diagram.
This chapter also shows the value of analysis skill over knowing UML notation;
the UML use case diagram is trivial to learn, but the many guidelines to iden-
tify and write good use cases take weeks—or longer—to fully digest.

Objectives
! Identify and write use cases.

! Use the brief, casual, and fully dressed formats, in an essential style.

! Apply tests to identify suitable use cases.

! Relate use case analysis to iterative development.

What’s Next?

Iteration 1

Requirements

Having introduced requirements, this chapter explores use cases for

functional requirements. The next covers other requirements in the UP,

including the Supplementary Specification for non-functional requirements.

Other

Requirements
Use Cases

Evolutionary

Requirements
Inception

UML and Patterns.book Page 61 Thursday, September 16, 2004 9:48 PM

6 – USE CASES

62

Figure 6.1 Sample UP artifact influence.

The influence of UP artifacts, with an emphasis on text use cases, is shown in
Figure 6.1. High-level goals and use case diagrams are input to the creation of
the use case text. The use cases can in turn influence many other analysis,
design, implementation, project management, and test artifacts.

Operation:

 enterItem(…)

Post-conditions:

- . . .

Operation Contracts

Sale

date

. . .

Sales

LineItem

quantity

1..*1
. . .

. . .

Domain Model

Use-Case Model

Design Model

: Register

enterItem

(itemID, quantity)

: ProductCatalog

spec = getProductSpec(itemID)

addLineItem(spec, quantity)

: Sale

objects, attributes,

associations

Require-

ments

Business

Modeling

Design

Sample UP Artifact Relationships

: System

enterItem

(id, quantity)

Use Case Text

System Sequence Diagrams

make

NewSale()

system

events

Cashier

Process

Sale

: Cashier

use

case

names

system

operations

Use Case Diagram

Vision

Supplementary

Specification

Glossary

scope, goals,

actors, features

terms, attributes,

validation

non-functional reqs,

quality attributes

requirements

Process Sale

1. Customer

arrives ...

2. Cashier

makes new

sale.

3. ...

UML and Patterns.book Page 62 Thursday, September 16, 2004 9:48 PM

63

EXAMPLE

6.1 Example

Informally, use cases are text stories of some actor using a system to meet goals.
Here is an example brief format use case:

Process Sale: A customer arrives at a checkout with items to
purchase. The cashier uses the POS system to record each pur-
chased item. The system presents a running total and line-item
details. The customer enters payment information, which the
system validates and records. The system updates inventory.
The customer receives a receipt from the system and then leaves
with the items.

UML use case
diagrams p. 89

Notice that use cases are not diagrams, they are text. Focusing on second-
ary-value UML use case diagrams rather than the important use case text is a
common mistake for use case novices.

Use cases often need to be more detailed or structured than this example, but
the essence is discovering and recording functional requirements by writing sto-
ries of using a system to fulfill user goals; that is, cases of use.1 It isn’t supposed
to be a difficult idea, although it’s often difficult to discover what’s needed and
write it well.

6.2 Definition: What are Actors, Scenarios, and Use Cases?

First, some informal definitions: an actor is something with behavior, such as a
person (identified by role), computer system, or organization; for example, a
cashier.

A scenario is a specific sequence of actions and interactions between actors and
the system; it is also called a use case instance. It is one particular story of
using a system, or one path through the use case; for example, the scenario of
successfully purchasing items with cash, or the scenario of failing to purchase
items because of a credit payment denial.

Informally then, a use case is a collection of related success and failure scenar-
ios that describe an actor using a system to support a goal. For example, here is
a casual format use case with alternate scenarios:

Handle Returns

Main Success Scenario: A customer arrives at a checkout with
items to return. The cashier uses the POS system to record each
returned item …

Alternate Scenarios:

1. The original term in Swedish literally translates as “usage case.”

UML and Patterns.book Page 63 Thursday, September 16, 2004 9:48 PM

6 – USE CASES

64

If the customer paid by credit, and the reimbursement transac-
tion to their credit account is rejected, inform the customer and
pay them with cash.

If the item identifier is not found in the system, notify the Cash-
ier and suggest manual entry of the identifier code (perhaps it is
corrupted).

If the system detects failure to communicate with the external
accounting system, …

Now that scenarios (use case instances) are defined, an alternate, but similar
definition of a use case provided by the RUP will make better sense:

A set of use-case instances, where each instance is a sequence of
actions a system performs that yields an observable result of
value to a particular actor [RUP].

6.3 Use Cases and the Use-Case Model

The UP defines the Use-Case Model within the Requirements discipline. Pri-
marily, this is the set of all written use cases; it is a model of the system’s func-
tionality and environment.

other UP require-
ments p. 101

The Use-Case Model is not the only requirement artifact in the UP. There are
also the Supplementary Specification, Glossary, Vision, and Business Rules.
These are all useful for requirements analysis, but secondary at this point.

UML use case dia-
gram p. 89

The Use-Case Model may optionally include a UML use case diagram to show
the names of use cases and actors, and their relationships. This gives a nice
context diagram of a system and its environment. It also provides a quick way
to list the use cases by name.

There is nothing object-oriented about use cases; we’re not doing OO analysis
when writing them. That’s not a problem—use cases are broadly applicable,
which increases their usefulness. That said, use cases are a key requirements
input to classic OOA/D.

6.4 Motivation: Why Use Cases?

We have goals and want computers to help meet them, ranging from recording

Use cases are text documents,
not diagrams, and use-case modeling is

primarily an act of writing text, not drawing diagrams.

UML and Patterns.book Page 64 Thursday, September 16, 2004 9:48 PM

65

DEFINITION: ARE USE CASES FUNCTIONAL REQUIREMENTS?

sales to playing games to estimating the flow of oil from future wells. Clever
analysts have invented many ways to capture goals, but the best are simple and
familiar. Why? This makes it easier—especially for customers—to contribute to
their definition and review. That lowers the risk of missing the mark. This may
seem like an off-hand comment, but it’s important. Researchers have concocted
complex analysis methods that they understand, but that send your average
business person into a coma! Lack of user involvement in software projects is
near the top of the list of reasons for project failure [Larman03], so anything
that can help keep them involved is truly desirable.

more motivation
p. 92

Use cases are a good way to help keep it simple, and make it possible for domain
experts or requirement donors to themselves write (or participate in writing)
use cases.

Another value of use cases is that they emphasize the user goals and perspective;
we ask the question “Who is using the system, what are their typical scenarios
of use, and what are their goals?” This is a more user-centric emphasis com-
pared to simply asking for a list of system features.

Much has been written about use cases, and though worthwhile, creative people
often obscure a simple idea with layers of sophistication or over-complication. It
is usually possible to spot a novice use-case modeler (or a serious Type-A ana-
lyst!) by an over-concern with secondary issues such as use case diagrams, use
case relationships, use case packages, and so forth, rather than a focus on the
hard work of simply writing the text stories.

That said, a strength of use cases is the ability to scale both up and down in
terms of sophistication and formality.

6.5 Definition: Are Use Cases Functional Requirements?

FURPS+ p. 56 Use cases are requirements, primarily functional or behavioral requirements
that indicate what the system will do. In terms of the FURPS+ requirements
types, they emphasize the “F” (functional or behavioral), but can also be used for
other types, especially when those other types strongly relate to a use case. In
the UP—and many modern methods—use cases are the central mechanism that
is recommended for their discovery and definition.

A related viewpoint is that a use case defines a contract of how a system will
behave [Cockburn01].

To be clear: Use cases are indeed requirements (although not all requirements).
Some think of requirements only as “the system shall do…” function or feature
lists. Not so, and a key idea of use cases is to (usually) reduce the importance or
use of detailed old-style feature lists and rather write use cases for the func-
tional requirements. More on this point in a later section.

UML and Patterns.book Page 65 Thursday, September 16, 2004 9:48 PM

6 – USE CASES

66

6.6 Definition: What are Three Kinds of Actors?

An actor is anything with behavior, including the system under discussion
(SuD) itself when it calls upon the services of other systems.2 Primary and sup-
porting actors will appear in the action steps of the use case text. Actors are
roles played not only by people, but by organizations, software, and machines.
There are three kinds of external actors in relation to the SuD:

! Primary actor—has user goals fulfilled through using services of the SuD.
For example, the cashier.

" Why identify? To find user goals, which drive the use cases.

! Supporting actor—provides a service (for example, information) to the
SuD. The automated payment authorization service is an example. Often a
computer system, but could be an organization or person.

" Why identify? To clarify external interfaces and protocols.

! Offstage actor—has an interest in the behavior of the use case, but is not
primary or supporting; for example, a government tax agency.

" Why identify? To ensure that all necessary interests are identified
and satisfied. Offstage actor interests are sometimes subtle or
easy to miss unless these actors are explicitly named.

6.7 Notation: What are Three Common Use Case Formats?

Use cases can be written in different formats and levels of formality:

example p. 63 ! brief—Terse one-paragraph summary, usually of the main success scenario.
The prior Process Sale example was brief.

" When? During early requirements analysis, to get a quick sense of
subject and scope. May take only a few minutes to create.

example p. 63 ! casual—Informal paragraph format. Multiple paragraphs that cover vari-
ous scenarios. The prior Handle Returns example was casual.

" When? As above.

2. This was a refinement and improvement to alternate definitions of actors, including
those in early versions of the UML and UP [Cockburn97]. Older definitions inconsis-
tently excluded the SuD as an actor, even when it called upon services of other sys-
tems. All entities may play multiple roles, including the SuD.

UML and Patterns.book Page 66 Thursday, September 16, 2004 9:48 PM

67

EXAMPLE: PROCESS SALE, FULLY DRESSED STYLE

example p. 68

more on timing of
writing use cases
p. 95

! fully dressed—All steps and variations are written in detail, and there are
supporting sections, such as preconditions and success guarantees.

" When? After many use cases have been identified and written in a
brief format, then during the first requirements workshop a few
(such as 10%) of the architecturally significant and high-value use
cases are written in detail.

The following example is a fully dressed case for our NextGen case study.

6.8 Example: Process Sale, Fully Dressed Style

Fully dressed use cases show more detail and are structured; they dig deeper.

In iterative and evolutionary UP requirements analysis, 10% of the critical use
cases would be written this way during the first requirements workshop. Then
design and programming starts on the most architecturally significant use cases
or scenarios from that 10% set.

Various format templates are available for detailed use cases. Probably the most
widely used and shared format, since the early 1990s, is the template available
on the Web at alistair.cockburn.us, created by Alistair Cockburn, the author of
the most popular book and approach to use-case modeling. The following exam-
ple illustrates this style.

Main Success
Scenario and
Extensions are the
two major sections

First, here’s the template:

Use Case Section Comment

Use Case Name Start with a verb.

Scope The system under design.

Level “user-goal” or “subfunction”

Primary Actor Calls on the system to deliver its services.

Stakeholders and Interests Who cares about this use case, and what do they want?

Preconditions What must be true on start, and worth telling the reader?

Success Guarantee What must be true on successful completion, and worth telling
the reader.

Main Success Scenario A typical, unconditional happy path scenario of success.

Extensions Alternate scenarios of success or failure.

Special Requirements Related non-functional requirements.

UML and Patterns.book Page 67 Thursday, September 16, 2004 9:48 PM

6 – USE CASES

68

Here’s an example, based on the template.

Use Case UC1: Process Sale

Technology and Data Vari-
ations List

Varying I/O methods and data formats.

Frequency of Occurrence Influences investigation, testing, and timing of implementation.

Miscellaneous Such as open issues.

Please note that this is the book’s primary case study example of
a detailed use case; it shows many common elements and issues.

It probably shows much more than you ever wanted to know about a POS
system! But, it’s for a real POS, and shows the ability of use cases to capture
complex real-world requirements, and deeply branching scenarios.

Scope: NextGen POS application
Level: user goal
Primary Actor: Cashier
Stakeholders and Interests:
– Cashier: Wants accurate, fast entry, and no payment errors, as cash drawer short-

ages are deducted from his/her salary.
– Salesperson: Wants sales commissions updated.
– Customer: Wants purchase and fast service with minimal effort. Wants easily visible

display of entered items and prices. Wants proof of purchase to support returns.
– Company: Wants to accurately record transactions and satisfy customer interests.

Wants to ensure that Payment Authorization Service payment receivables are
recorded. Wants some fault tolerance to allow sales capture even if server compo-
nents (e.g., remote credit validation) are unavailable. Wants automatic and fast
update of accounting and inventory.

– Manager: Wants to be able to quickly perform override operations, and easily debug
Cashier problems.

– Government Tax Agencies: Want to collect tax from every sale. May be multiple agen-
cies, such as national, state, and county.

– Payment Authorization Service: Wants to receive digital authorization requests in the
correct format and protocol. Wants to accurately account for their payables to the
store.

Preconditions: Cashier is identified and authenticated.
Success Guarantee (or Postconditions): Sale is saved. Tax is correctly calculated.
Accounting and Inventory are updated. Commissions recorded. Receipt is generated.
Payment authorization approvals are recorded.

Use Case Section Comment

UML and Patterns.book Page 68 Thursday, September 16, 2004 9:48 PM

69

EXAMPLE: PROCESS SALE, FULLY DRESSED STYLE

Main Success Scenario (or Basic Flow):
1. Customer arrives at POS checkout with goods and/or services to purchase.
2. Cashier starts a new sale.
3. Cashier enters item identifier.
4. System records sale line item and presents item description, price, and running total.

Price calculated from a set of price rules.
Cashier repeats steps 3-4 until indicates done.
5. System presents total with taxes calculated.
6. Cashier tells Customer the total, and asks for payment.
7. Customer pays and System handles payment.
8. System logs completed sale and sends sale and payment information to the external

Accounting system (for accounting and commissions) and Inventory system (to
update inventory).

9. System presents receipt.
10. Customer leaves with receipt and goods (if any).

Extensions (or Alternative Flows):
*a. At any time, Manager requests an override operation:

1. System enters Manager-authorized mode.
2. Manager or Cashier performs one Manager-mode operation. e.g., cash balance

change, resume a suspended sale on another register, void a sale, etc.
3. System reverts to Cashier-authorized mode.

*b. At any time, System fails:
To support recovery and correct accounting, ensure all transaction sensitive state

and events can be recovered from any step of the scenario.
1. Cashier restarts System, logs in, and requests recovery of prior state.
2. System reconstructs prior state.

2a. System detects anomalies preventing recovery:
1. System signals error to the Cashier, records the error, and enters a clean

state.
2. Cashier starts a new sale.

1a. Customer or Manager indicate to resume a suspended sale.
1. Cashier performs resume operation, and enters the ID to retrieve the sale.
2. System displays the state of the resumed sale, with subtotal.

2a. Sale not found.
1. System signals error to the Cashier.
2. Cashier probably starts new sale and re-enters all items.

3. Cashier continues with sale (probably entering more items or handling payment).
2-4a. Customer tells Cashier they have a tax-exempt status (e.g., seniors, native peo-

ples)
1. Cashier verifies, and then enters tax-exempt status code.
2. System records status (which it will use during tax calculations)

3a. Invalid item ID (not found in system):
1. System signals error and rejects entry.
2. Cashier responds to the error:

2a. There is a human-readable item ID (e.g., a numeric UPC):
1. Cashier manually enters the item ID.
2. System displays description and price.

2a. Invalid item ID: System signals error. Cashier tries alternate method.
2b. There is no item ID, but there is a price on the tag:

1. Cashier asks Manager to perform an override operation.

UML and Patterns.book Page 69 Thursday, September 16, 2004 9:48 PM

6 – USE CASES

70

2. Managers performs override.
3. Cashier indicates manual price entry, enters price, and requests standard

taxation for this amount (because there is no product information, the tax
engine can’t otherwise deduce how to tax it)

2c. Cashier performs Find Product Help to obtain true item ID and price.
2d. Otherwise, Cashier asks an employee for the true item ID or price, and does

either manual ID or manual price entry (see above).
3b. There are multiple of same item category and tracking unique item identity not

important (e.g., 5 packages of veggie-burgers):
1. Cashier can enter item category identifier and the quantity.

3c. Item requires manual category and price entry (such as flowers or cards with a price
on them):
1. Cashier enters special manual category code, plus the price.

3-6a: Customer asks Cashier to remove (i.e., void) an item from the purchase:
This is only legal if the item value is less than the void limit for Cashiers, otherwise a

Manager override is needed.
1. Cashier enters item identifier for removal from sale.
2. System removes item and displays updated running total.

2a. Item price exceeds void limit for Cashiers:
1. System signals error, and suggests Manager override.
2. Cashier requests Manager override, gets it, and repeats operation.

3-6b. Customer tells Cashier to cancel sale:
1. Cashier cancels sale on System.

3-6c. Cashier suspends the sale:
1. System records sale so that it is available for retrieval on any POS register.
2. System presents a “suspend receipt” that includes the line items, and a sale ID

used to retrieve and resume the sale.
4a. The system supplied item price is not wanted (e.g., Customer complained about

something and is offered a lower price):
1. Cashier requests approval from Manager.
2. Manager performs override operation.
3. Cashier enters manual override price.
4. System presents new price.

5a. System detects failure to communicate with external tax calculation system service:
1. System restarts the service on the POS node, and continues.

1a. System detects that the service does not restart.
1. System signals error.
2. Cashier may manually calculate and enter the tax, or cancel the sale.

5b. Customer says they are eligible for a discount (e.g., employee, preferred customer):
1. Cashier signals discount request.
2. Cashier enters Customer identification.
3. System presents discount total, based on discount rules.

5c. Customer says they have credit in their account, to apply to the sale:
1. Cashier signals credit request.
2. Cashier enters Customer identification.
3. Systems applies credit up to price=0, and reduces remaining credit.

6a. Customer says they intended to pay by cash but don’t have enough cash:
1. Cashier asks for alternate payment method.

1a. Customer tells Cashier to cancel sale. Cashier cancels sale on System.

UML and Patterns.book Page 70 Thursday, September 16, 2004 9:48 PM

71

EXAMPLE: PROCESS SALE, FULLY DRESSED STYLE

7a. Paying by cash:
1. Cashier enters the cash amount tendered.
2. System presents the balance due, and releases the cash drawer.
3. Cashier deposits cash tendered and returns balance in cash to Customer.
4. System records the cash payment.

7b. Paying by credit:
1. Customer enters their credit account information.
2. System displays their payment for verification.
3. Cashier confirms.

3a. Cashier cancels payment step:
1. System reverts to “item entry” mode.

4. System sends payment authorization request to an external Payment Authoriza-
tion Service System, and requests payment approval.
4a. System detects failure to collaborate with external system:

1. System signals error to Cashier.
2. Cashier asks Customer for alternate payment.

5. System receives payment approval, signals approval to Cashier, and releases
cash drawer (to insert signed credit payment receipt).
5a. System receives payment denial:

1. System signals denial to Cashier.
2. Cashier asks Customer for alternate payment.

5b. Timeout waiting for response.
1. System signals timeout to Cashier.
2. Cashier may try again, or ask Customer for alternate payment.

6. System records the credit payment, which includes the payment approval.
7. System presents credit payment signature input mechanism.
8. Cashier asks Customer for a credit payment signature. Customer enters signa-

ture.
9. If signature on paper receipt, Cashier places receipt in cash drawer and closes it.

7c. Paying by check…
7d. Paying by debit…
7e. Cashier cancels payment step:

1. System reverts to “item entry” mode.
7f. Customer presents coupons:

1. Before handling payment, Cashier records each coupon and System reduces
price as appropriate. System records the used coupons for accounting reasons.
1a. Coupon entered is not for any purchased item:

1. System signals error to Cashier.
9a. There are product rebates:

1. System presents the rebate forms and rebate receipts for each item with a
rebate.

9b. Customer requests gift receipt (no prices visible):
1. Cashier requests gift receipt and System presents it.

9c. Printer out of paper.
1. If System can detect the fault, will signal the problem.
2. Cashier replaces paper.
3. Cashier requests another receipt.

UML and Patterns.book Page 71 Thursday, September 16, 2004 9:48 PM

6 – USE CASES

72

This use case is illustrative rather than exhaustive (although it is based on a
real POS system’s requirements—developed with an OO design in Java). Never-
theless, there is enough detail and complexity here to offer a realistic sense that
a fully dressed use case can record many requirement details. This example will
serve well as a model for many use case problems.

6.9 What do the Sections Mean?

Preface Elements

Scope

The scope bounds the system (or systems) under design. Typically, a use case
describes use of one software (or hardware plus software) system; in this case it
is known as a system use case. At a broader scope, use cases can also describe
how a business is used by its customers and partners. Such an enterprise-level

Special Requirements:
– Touch screen UI on a large flat panel monitor. Text must be visible from 1 meter.
– Credit authorization response within 30 seconds 90% of the time.
– Somehow, we want robust recovery when access to remote services such the inven-

tory system is failing.
– Language internationalization on the text displayed.
– Pluggable business rules to be insertable at steps 3 and 7.
– . . .

Technology and Data Variations List:
*a. Manager override entered by swiping an override card through a card reader, or

entering an authorization code via the keyboard.
3a. Item identifier entered by bar code laser scanner (if bar code is present) or key-

board.
3b. Item identifier may be any UPC, EAN, JAN, or SKU coding scheme.
7a. Credit account information entered by card reader or keyboard.
7b. Credit payment signature captured on paper receipt. But within two years, we pre-

dict many customers will want digital signature capture.

Frequency of Occurrence: Could be nearly continuous.

Open Issues:
– What are the tax law variations?
– Explore the remote service recovery issue.
– What customization is needed for different businesses?
– Must a cashier take their cash drawer when they log out?
– Can the customer directly use the card reader, or does the cashier have to do it?

UML and Patterns.book Page 72 Thursday, September 16, 2004 9:48 PM

73

WHAT DO THE SECTIONS MEAN?

process description is called a business use case and is a good example of the
wide applicability of use cases, but they aren’t covered in this introductory book.

Level

EBP p. 88

see the use case
“include” relation-
ship for more on
subfunction use
cases p. 494

In Cockburn’s system, use cases are classified as at the user-goal level or the
subfunction level, among others. A user-goal level use case is the common kind
that describe the scenarios to fulfill the goals of a primary actor to get work
done; it roughly corresponds to an elementary business process (EBP) in
business process engineering. A subfunction-level use case describes substeps
required to support a user goal, and is usually created to factor out duplicate
substeps shared by several regular use cases (to avoid duplicating common
text); an example is the subfunction use case Pay by Credit, which could be
shared by many regular use cases.

Primary Actor

The principal actor that calls upon system services to fulfill a goal.

Stakeholders and Interests List—Important!

This list is more important and practical than may appear at first glance. It sug-
gests and bounds what the system must do. To quote:

The [system] operates a contract between stakeholders, with the
use cases detailing the behavioral parts of that contract…The
use case, as the contract for behavior, captures all and only the
behaviors related to satisfying the stakeholders’ interests
[Cockburn01].

This answers the question: What should be in the use case? The answer is: That
which satisfies all the stakeholders’ interests. In addition, by starting with the
stakeholders and their interests before writing the remainder of the use case,
we have a method to remind us what the more detailed responsibilities of the
system should be. For example, would I have identified a responsibility for sales-
person commission handling if I had not first listed the salesperson stakeholder
and their interests? Hopefully eventually, but perhaps I would have missed it
during the first analysis session. The stakeholder interest viewpoint provides a
thorough and methodical procedure for discovering and recording all the
required behaviors.

Stakeholders and Interests:
– Cashier: Wants accurate, fast entry and no payment errors, as cash drawer shortages

are deducted from his/her salary.
– Salesperson: Wants sales commissions updated.
– …

UML and Patterns.book Page 73 Thursday, September 16, 2004 9:48 PM

6 – USE CASES

74

Preconditions and Success Guarantees (Postconditions)

First, don’t bother with a precondition or success guarantee unless you are stat-
ing something non-obvious and noteworthy, to help the reader gain insight.
Don’t add useless noise to requirements documents.

Preconditions state what must always be true before a scenario is begun in
the use case. Preconditions are not tested within the use case; rather, they are
conditions that are assumed to be true. Typically, a precondition implies a sce-
nario of another use case, such as logging in, that has successfully completed.
Note that there are conditions that must be true, but are not worth writing, such
as “the system has power.” Preconditions communicate noteworthy assumptions
that the writer thinks readers should be alerted to.

Success guarantees (or postconditions) state what must be true on success-
ful completion of the use case—either the main success scenario or some alter-
nate path. The guarantee should meet the needs of all stakeholders.

Main Success Scenario and Steps (or Basic Flow)

This has also been called the “happy path” scenario, or the more prosaic “Basic
Flow” or “Typical Flow.” It describes a typical success path that satisfies the
interests of the stakeholders. Note that it often does not include any conditions
or branching. Although not wrong or illegal, it is arguably more comprehensible
and extendible to be very consistent and defer all conditional handling to the
Extensions section.

The scenario records the steps, of which there are three kinds:

1. An interaction between actors.3

2. A validation (usually by the system).

3. A state change by the system (for example, recording or modifying
something).

Preconditions: Cashier is identified and authenticated.
Success Guarantee (Postconditions): Sale is saved. Tax is correctly calculated.
Accounting and Inventory are updated. Commissions recorded. Receipt is generated.

Guideline

Defer all conditional and branching statements to the Extensions section.

3. Note that the system under discussion itself should be considered an actor when it
plays an actor role collaborating with other systems.

UML and Patterns.book Page 74 Thursday, September 16, 2004 9:48 PM

75

WHAT DO THE SECTIONS MEAN?

Step one of a use case does not always fall into this classification, but indicates
the trigger event that starts the scenario.

It is a common idiom to always capitalize the actors’ names for ease of identifica-
tion. Observe also the idiom that is used to indicate repetition.

Extensions (or Alternate Flows)

Extensions are important and normally comprise the majority of the text. They
indicate all the other scenarios or branches, both success and failure. Observe in
the fully dressed example that the Extensions section was considerably longer
and more complex than the Main Success Scenario section; this is common.

In thorough use case writing, the combination of the happy path and extension
scenarios should satisfy “nearly” all the interests of the stakeholders. This point
is qualified, because some interests may best be captured as non-functional
requirements expressed in the Supplementary Specification rather than the use
cases. For example, the customer’s interest for a visible display of descriptions
and prices is a usability requirement.

Extension scenarios are branches from the main success scenario, and so can be
notated with respect to its steps 1…N. For example, at Step 3 of the main suc-
cess scenario there may be an invalid item identifier, either because it was incor-
rectly entered or unknown to the system. An extension is labeled “3a”; it first
identifies the condition and then the response. Alternate extensions at Step 3
are labeled “3b” and so forth.

An extension has two parts: the condition and the handling.

Guideline: When possible, write the condition as something that can be
detected by the system or an actor. To contrast:

5a. System detects failure to communicate with external tax calculation system service:
5a. External tax calculation system not working:

Main Success Scenario:
1. Customer arrives at a POS checkout with items to purchase.
2. Cashier starts a new sale.
3. Cashier enters item identifier.
4. …
Cashier repeats steps 3-4 until indicates done.
5. …

Extensions:
3a. Invalid identifier:

1. System signals error and rejects entry.
3b. There are multiple of same item category and tracking unique item identity not

important (e.g., 5 packages of veggie-burgers):
1. Cashier can enter item category identifier and the quantity.

UML and Patterns.book Page 75 Thursday, September 16, 2004 9:48 PM

6 – USE CASES

76

The former style is preferred because this is something the system can detect;
the latter is an inference.

Extension handling can be summarized in one step, or include a sequence, as in
this example, which also illustrates notation to indicate that a condition can
arise within a range of steps:

At the end of extension handling, by default the scenario merges back with the
main success scenario, unless the extension indicates otherwise (such as by
halting the system).

Sometimes, a particular extension point is quite complex, as in the “paying by
credit” extension. This can be a motivation to express the extension as a sepa-
rate use case.

This extension example also demonstrates the notation to express failures
within extensions.

If it is desirable to describe an extension condition as possible during any (or at
least most) steps, the labels *a, *b, …, can be used.

Performing Another Use Case Scenario

Sometimes, a use case branches to perform another use case scenario. For exam-
ple, the story Find Product Help (to show product details, such as description,
price, a picture or video, and so on) is a distinct use case that is sometimes per-
formed while within Process Sale (usually when the item ID can’t be found). In

3-6a: Customer asks Cashier to remove an item from the purchase:
1. Cashier enters the item identifier for removal from the sale.
2. System displays updated running total.

7b. Paying by credit:
1. Customer enters their credit account information.
2. System sends payment authorization request to an external Payment Authoriza-

tion Service System, and requests payment approval.
2a. System detects failure to collaborate with external system:

1. System signals error to Cashier.
2. Cashier asks Customer for alternate payment.

*a. At any time, System crashes:
In order to support recovery and correct accounting, ensure all transaction sensitive

state and events can be recovered at any step in the scenario.
1. Cashier restarts the System, logs in, and requests recovery of prior state.
2. System reconstructs prior state.

UML and Patterns.book Page 76 Thursday, September 16, 2004 9:48 PM

77

WHAT DO THE SECTIONS MEAN?

Cockburn notation, performing this second use case is shown with underlining,
as this example shows:

Assuming, as usual, that the use cases are written with a hyperlinking tool,
then clicking on this underlined use case name will display its text.

Special Requirements

If a non-functional requirement, quality attribute, or constraint relates specifi-
cally to a use case, record it with the use case. These include qualities such as
performance, reliability, and usability, and design constraints (often in I/O
devices) that have been mandated or considered likely.

Recording these with the use case is classic UP advice, and a reasonable location
when first writing the use case. However, many practitioners find it useful to
ultimately move and consolidate all non-functional requirements in the Supple-
mentary Specification, for content management, comprehension, and readabil-
ity, because these requirements usually have to be considered as a whole during
architectural analysis.

Technology and Data Variations List

Often there are technical variations in how something must be done, but not
what, and it is noteworthy to record this in the use case. A common example is a
technical constraint imposed by a stakeholder regarding input or output tech-
nologies. For example, a stakeholder might say, “The POS system must support
credit account input using a card reader and the keyboard.” Note that these are
examples of early design decisions or constraints; in general, it is skillful to
avoid premature design decisions, but sometimes they are obvious or unavoid-
able, especially concerning input/output technologies.

It is also necessary to understand variations in data schemes, such as using
UPCs or EANs for item identifiers, encoded in bar code symbology.

3a. Invalid item ID (not found in system):
1. System signals error and rejects entry.
2. Cashier responds to the error:

2a. …
2c. Cashier performs Find Product Help to obtain true item ID and price.

Special Requirements:
– Touch screen UI on a large flat panel monitor. Text must be visible from 1 meter.
– Credit authorization response within 30 seconds 90% of the time.
– Language internationalization on the text displayed.
– Pluggable business rules to be insertable at steps 2 and 6.

UML and Patterns.book Page 77 Thursday, September 16, 2004 9:48 PM

6 – USE CASES

78

This list is the place to record such variations. It is also useful to record varia-
tions in the data that may be captured at a particular step.

6.10 Notation: Are There Other Formats? A Two-Column Variation

Some prefer the two-column or conversational format, which emphasizes the
interaction between the actors and the system. It was first proposed by Rebecca
Wirfs-Brock in [Wirfs-Brock93], and is also promoted by Constantine and Lock-
wood to aid usability analysis and engineering [CL99]. Here is the same content
using the two-column format:

Technology and Data Variations List:
3a. Item identifier entered by laser scanner or keyboard.
3b. Item identifier may be any UPC, EAN, JAN, or SKU coding scheme.
7a. Credit account information entered by card reader or keyboard.
7b. Credit payment signature captured on paper receipt. But within two years, we pre-

dict many customers will want digital signature capture.

Congratulations: Use Cases are Written and Wrong (!)

The NextGen POS team is writing a few use cases in multiple short requirements workshops, in parallel
with a series of short timeboxed development iterations that involve production-quality programming and
testing. The team is incrementally adding to the use case set, and refining and adapting based on feedback
from early programming, tests, and demos. Subject matter experts, cashiers, and developers actively partic-
ipate in requirements analysis.

That’s a good evolutionary analysis process—rather than the waterfall—but a dose of “requirements real-
ism” is still needed. Written specifications and other models give the illusion of correctness, but models lie
(unintentionally). Only code and tests reveals the truth of what’s really wanted and works.

The use cases, UML diagrams, and so forth won’t be perfect—guaranteed. They will lack critical information
and contain wrong statements. The solution is not the waterfall attitude of trying to record specifications
near-perfect and complete at the start—although of course we do the best we can in the time available, and
should learn and apply great requirements practices. But it will never be enough.

This isn’t a call to rush to coding without any analysis or modeling. There is a middle way, between the
waterfall and ad hoc programming: iterative and evolutionary development. In this approach the use cases
and other models are incrementally refined, verified, and clarified through early programming and testing.

You know you’re on the wrong path if the team tries to write in detail all or most of the use cases before
beginning the first development iteration—or the opposite.

UML and Patterns.book Page 78 Thursday, September 16, 2004 9:48 PM

79

NOTATION: ARE THERE OTHER FORMATS? A TWO-COLUMN VARIATION

Use Case UC1: Process Sale

The Best Format?

There isn’t one best format; some prefer the one-column style, some the two-col-
umn. Sections may be added and removed; heading names may change. None of
this is particularly important; the key thing is to write the details of the main
success scenario and its extensions, in some form. [Cockburn01] summarizes
many usable formats.

Primary Actor: …
… as before …

Main Success Scenario:
Actor Action (or Intention) System Responsibility
1. Customer arrives at a POS checkout

with goods and/or services to
purchase.

2. Cashier starts a new sale.
3. Cashier enters item identifier. 4. Records each sale line item and pre-

sents item description and running
total.

Cashier repeats steps 3-4 until indi-
cates done.

5. Presents total with taxes
calculated.

6. Cashier tells Customer the total, and
asks for payment.

7. Customer pays. 8. Handles payment.

9. Logs the completed sale and sends
information to the external account-
ing (for all accounting and commis-
sions) and inventory systems (to
update inventory). System presents
receipt.

… …

Personal Practice

This is my practice, not a recommendation. For some years, I used the two-
column format because of its clear visual separation in the conversation.
However, I have reverted to a one-column style as it is more compact and
easier to format, and the slight value of the visually separated conversation
does not for me outweigh these benefits. I find it still simple to visually iden-
tify the different parties in the conversation (Customer, System, …) if each
party and the System responses are usually allocated to their own steps.

UML and Patterns.book Page 79 Thursday, September 16, 2004 9:48 PM

6 – USE CASES

80

6.11 Guideline: Write in an Essential UI-Free Style

New and Improved! The Case for Fingerprinting

During a requirements workshop, the cashier may say one of his goals is to “log
in.” The cashier was probably thinking of a GUI, dialog box, user ID, and pass-
word. This is a mechanism to achieve a goal, rather than the goal itself. By
investigating up the goal hierarchy (“What is the goal of that goal?”), the system
analyst arrives at a mechanism-independent goal: “identify myself and get
authenticated,” or an even higher goal: “prevent theft …”.

This root-goal discovery process can open up the vision to new and improved
solutions. For example, keyboards and mice with biometric readers, usually for a
fingerprint, are now common and inexpensive. If the goal is “identification and
authentication” why not make it easy and fast using a biometric reader on the
keyboard? But properly answering that question involves some usability analy-
sis work as well. Are their fingers covered in grease? Do they have fingers?

Essential Style Writing

This idea has been summarized in various use case guidelines as “keep the user
interface out; focus on intent” [Cockburn01]. Its motivation and notation has
been more fully explored by Larry Constantine in the context of creating better
user interfaces (UIs) and doing usability engineering [Constantine94, CL99].
Constantine calls the writing style essential when it avoids UI details and
focuses on the real user intent.4

In an essential writing style, the narrative is expressed at the level of the user’s
intentions and system’s responsibilities rather than their concrete actions. They
remain free of technology and mechanism details, especially those related to the
UI.

All of the previous example use cases in this chapter, such as Process Sale, were
written aiming towards an essential style.

4. The term comes from “essential models” in Essential Systems Analysis [MP84].

Guideline

Write use cases in an essential style; keep the user interface out and focus on
actor intent.

UML and Patterns.book Page 80 Thursday, September 16, 2004 9:48 PM

81

GUIDELINE: WRITE TERSE USE CASES

Contrasting Examples

Essential Style

Assume that the Manage Users use case requires identification and authentica-
tion:

The design solution to these intentions and responsibilities is wide open: bio-
metric readers, graphical user interfaces (GUIs), and so forth.

Concrete Style—Avoid During Early Requirements Work

In contrast, there is a concrete use case style. In this style, user interface deci-
sions are embedded in the use case text. The text may even show window screen
shots, discuss window navigation, GUI widget manipulation and so forth. For
example:

These concrete use cases may be useful as an aid to concrete or detailed GUI
design work during a later step, but they are not suitable during the early
requirements analysis work. During early requirements work, “keep the user
interface out—focus on intent.”

6.12 Guideline: Write Terse Use Cases

Do you like to read lots of requirements? I didn’t think so. So, write terse use
cases. Delete “noise” words. Even small changes add up, such as “System
authenticates…” rather than “The System authenticates…”

6.13 Guideline: Write Black-Box Use Cases

Black-box use cases are the most common and recommended kind; they do not
describe the internal workings of the system, its components, or design. Rather,
the system is described as having responsibilities, which is a common unifying

. . .
1. Administrator identifies self.
2. System authenticates identity.
3. . . .

. . .
1. Adminstrator enters ID and password in dialog box (see Picture 3).
2. System authenticates Administrator.
3. System displays the “edit users” window (see Picture 4).
4. . . .

UML and Patterns.book Page 81 Thursday, September 16, 2004 9:48 PM

6 – USE CASES

82

metaphorical theme in object-oriented thinking—software elements have
responsibilities and collaborate with other elements that have responsibilities.

By defining system responsibilities with black-box use cases, one can specify
what the system must do (the behavior or functional requirements) without
deciding how it will do it (the design). Indeed, the definition of “analysis” versus
“design” is sometimes summarized as “what” versus “how.” This is an important
theme in good software development: During requirements analysis avoid mak-
ing “how” decisions, and specify the external behavior for the system, as a black
box. Later, during design, create a solution that meets the specification.

6.14 Guideline: Take an Actor and Actor-Goal Perspective

Here’s the RUP use case definition, from the use case founder Ivar Jacobson:

A set of use-case instances, where each instance is a sequence of
actions a system performs that yields an observable result of
value to a particular actor.

The phrase “an observable result of value to a particular actor” is a subtle but
important concept that Jacobson considers critical, because it stresses two atti-
tudes during requirements analysis:

! Write requirements focusing on the users or actors of a system, asking about
their goals and typical situations.

! Focus on understanding what the actor considers a valuable result.

function lists p. 92

Perhaps it seems obvious to stress providing observable user value and focusing
on users’ typical goals, but the software industry is littered with failed projects
that did not deliver what people really needed. The old feature and function list
approach to capturing requirements can contribute to that negative outcome
because it did not encourage asking who is using the product, and what provides
value.

6.15 Guideline: How to Find Use Cases

Use cases are defined to satisfy the goals of the primary actors. Hence, the basic

Black-box style Not

The system records the sale. The system writes the sale to a data-
base. …or (even worse):

The system generates a SQL INSERT
statement for the sale…

UML and Patterns.book Page 82 Thursday, September 16, 2004 9:48 PM

83

GUIDELINE: HOW TO FIND USE CASES

procedure is:

1. Choose the system boundary. Is it just a software application, the hardware
and application as a unit, that plus a person using it, or an entire organiza-
tion?

2. Identify the primary actors—those that have goals fulfilled through using
services of the system.

3. Identify the goals for each primary actor.

4. Define use cases that satisfy user goals; name them according to their goal.
Usually, user-goal level use cases will be one-to-one with user goals, but
there is at least one exception, as will be examined.

Of course, in iterative and evolutionary development, not all goals or use cases
will be fully or correctly identified near the start. It’s an evolving discovery.

Step 1: Choose the System Boundary

For this case study, the POS system itself is the system under design; every-
thing outside of it is outside the system boundary, including the cashier, pay-
ment authorization service, and so on.

If the definition of the boundary of the system under design is not clear, it can be
clarified by further definition of what is outside—the external primary and sup-
porting actors. Once the external actors are identified, the boundary becomes
clearer. For example, is the complete responsibility for payment authorization
within the system boundary? No, there is an external payment authorization
service actor.

Steps 2 and 3: Find Primary Actors and Goals

It is artificial to strictly linearize the identification of primary actors before user
goals; in a requirements workshop, people brainstorm and generate a mixture of
both. Sometimes, goals reveal the actors, or vice versa.

Guideline: Brainstorm the primary actors first, as this sets up the framework
for further investigation.

Are There Questions to Help Find Actors and Goals?

In addition to obvious primary actors and goals, the following questions help
identify others that may be missed:

Who starts and stops the system? Who does system administration?

Who does user and security
management?

Is “time” an actor because the sys-
tem does something in response to a
time event?

UML and Patterns.book Page 83 Thursday, September 16, 2004 9:48 PM

6 – USE CASES

84

How to Organize the Actors and Goals?

There are at least two approaches:

use case diagrams
p. 89

1. As you discover the results, draw them in a use case diagram, naming the
goals as use cases.

2. Write an actor-goal list first, review and refine it, and then draw the use
case diagram.

If you create an actor-goal list, then in terms of UP artifacts it may be a section
in the Vision artifact.

For example:

The Sales Activity System is a remote application that will frequently request
sales data from each POS node in the network.

Why Ask About Actor Goals Rather Than Use Cases?

Actors have goals and use applications to help satisfy them. The viewpoint of
use case modeling is to find these actors and their goals, and create solutions
that produce a result of value. This is slight shift in emphasis for the use case

Is there a monitoring process that
restarts the system if it fails?

Who evaluates system activity or
performance?

How are software updates handled?
Push or pull update?

Who evaluates logs? Are they
remotely retrieved?

In addition to human primary
actors, are there any external soft-
ware or robotic systems that call
upon services of the system?

Who gets notified when there are
errors or failures?

Actor Goal Actor Goal

Cashier process sales
process rentals
handle returns
cash in
cash out
. . .

System
Administra-
tor

add users
modify users
delete users
manage security
manage system tables
. . .

Manager start up
shut down
. . .

Sales
Activity
System

analyze sales and per-
formance data

.

UML and Patterns.book Page 84 Thursday, September 16, 2004 9:48 PM

85

GUIDELINE: HOW TO FIND USE CASES

modeler. Rather than asking “What are the tasks?”, one starts by asking: “Who
uses the system and what are their goals?” In fact, the name of a use case for a
user goal should reflect its name, to emphasize this viewpoint—Goal: capture or
process a sale; use case: Process Sale.

Thus, here is a key idea regarding investigating requirements and use cases:

Answers to the first question are more likely to reflect current solutions and
procedures, and the complications associated with them.

Answers to the second question, especially combined with an investigation to
move higher up the goal hierarchy (“what is the root goal?”) open up the vision
for new and improved solutions, focus on adding business value, and get to the
heart of what the stakeholders want from the system.

Is the Cashier or Customer the Primary Actor?

Why is the cashier, and not the customer, a primary actor in the use case Process
Sale?

The answer depends on the system boundary of the system under design, and
who we are primarily designing the system for, as illustrated in Figure 6.2. If
the enterprise or checkout service is viewed as an aggregate system, the cus-
tomer is a primary actor, with the goal of getting goods or services and leaving.
However, from the viewpoint of just the POS system (which is the choice of sys-
tem boundary for this case study), the system services the goal of a trained cash-
ier (and the store) to process the customer’s sale. This assumes a traditional
checkout environment with a cashier, although there are an increasing number
of self-checkout POS systems in operation for direct use by customers.

Imagine we are together in a requirements workshop. We could ask either:

! “What do you do?” (roughly a task-oriented question) or,

! “What are your goals whose results have measurable value?”

Prefer the second question.

UML and Patterns.book Page 85 Thursday, September 16, 2004 9:48 PM

6 – USE CASES

86

Figure 6.2 Primary actors and goals at different system boundaries.

The customer is an actor, but in the context of the NextGen POS, not a primary
actor; rather, the cashier is the primary actor because the system is being
designed to primarily serve the trained cashier’s “power user” goals (to quickly
process a sale, look up prices, etc.). The system does not have a UI and function-
ality that could equally be used by the customer or cashier. Rather, it is opti-
mized to meet the needs and training of a cashier. A customer in front of the
POS terminal wouldn’t know how to use it effectively. In other words, it was
designed for the cashier, not the customer, and so the cashier is not just a proxy
for the customer.

On the other hand, consider a ticket-buying website that is identical for a cus-
tomer to use directly or a phone agent to use, when a customer calls in. In this
case, the agent is simply a proxy for the customer—the system is not designed to
especially meet the unique goals of the agent. Then, showing the customer
rather than the phone agent as the primary actor is correct.

Other Ways to Find Actors and Goals? Event Analysis

Another approach to aid in finding actors, goals, and use cases is to identify
external events. What are they, where from, and why? Often, a group of events
belong to the same use case. For example:

External Event From Actor Goal/Use Case

enter sale line item Cashier process a sale

Goal: Process sales

Cashier

Customer

POS System

Checkout Service

Goal: Buy items

Enterprise Selling Things

Sales Tax
Agency

Goal: Collect
taxes on sales Sales Activity

System

Goal: Analyze sales
and performance data

UML and Patterns.book Page 86 Thursday, September 16, 2004 9:48 PM

87

GUIDELINE: WHAT TESTS CAN HELP FIND USEFUL USE CASES?

Step 4: Define Use Cases

In general, define one use case for each user goal. Name the use case similar to
the user goal—for example, Goal: process a sale; Use Case: Process Sale.

A common exception to one use case per goal is to collapse CRUD (create,
retrieve, update, delete) separate goals into one CRUD use case, idiomatically
called Manage <X>. For example, the goals “edit user,” “delete user,” and so forth
are all satisfied by the Manage Users use case.

6.16 Guideline: What Tests Can Help Find Useful Use Cases?

Which of these is a valid use case?

! Negotiate a Supplier Contract

! Handle Returns

! Log In

! Move Piece on Game Board

An argument can be made that all of these are use cases at different levels,
depending on the system boundary, actors, and goals.

But rather than asking in general, “What is a valid use case?”, a more practical
question is: “What is a useful level to express use cases for application require-
ments analysis?” There are several rules of thumb, including:

! The Boss Test

! The EBP Test

! The Size Test

The Boss Test

Your boss asks, “What have you been doing all day?” You reply: “Logging in!” Is
your boss happy?

enter payment Cashier or Customer process a sale

. . .

External Event From Actor Goal/Use Case

Start the name of use cases with a verb.

UML and Patterns.book Page 87 Thursday, September 16, 2004 9:48 PM

6 – USE CASES

88

If not, the use case fails the Boss Test, which implies it is not strongly related to
achieving results of measurable value. It may be a use case at some low goal
level, but not the desirable level of focus for requirements analysis.

That doesn’t mean to always ignore boss-test-failing use cases. User authentica-
tion may fail the boss test, but may be important and difficult.

The EBP Test

An Elementary Business Process (EBP) is a term from the business process
engineering field,5 defined as:

A task performed by one person in one place at one time, in
response to a business event, which adds measurable business
value and leaves the data in a consistent state, e.g., Approve
Credit or Price Order [original source lost].

The EBP Test is similar to the Boss Test, especially in terms of the measurable
business value qualification.

The definition can be taken too literally: Does a use case fail as an EBP if two
people are required, or if a person has to walk around? Probably not, but the feel
of the definition is about right. It’s not a single small step like “delete a line
item” or “print the document.” Rather, the main success scenario is probably five
or ten steps. It doesn’t take days and multiple sessions, like “negotiate a sup-
plier contract”; it is a task done during a single session. It is probably between a
few minutes and an hour in length. As with the UP’s definition, it emphasizes
adding observable or measurable business value, and it comes to a resolution in
which the system and data are in a stable and consistent state.

The Size Test

A use case is very seldom a single action or step; rather, a use case typically con-
tains many steps, and in the fully dressed format will often require 3–10 pages
of text. A common mistake in use case modeling is to define just a single step
within a series of related steps as a use case by itself, such as defining a use case
called Enter an Item ID. You can see a hint of the error by its small size—the use
case name will wrongly suggest just one step within a larger series of steps, and
if you imagine the length of its fully dressed text, it would be extremely short.

5. EBP is similar to the term user task in usability engineering, although the meaning
is less strict in that domain.

Focus on use cases that reflect EBPs.

UML and Patterns.book Page 88 Thursday, September 16, 2004 9:48 PM

89

APPLYING UML: USE CASE DIAGRAMS

Example: Applying the Tests

! Negotiate a Supplier Contract

" Much broader and longer than an EBP. Could be modeled as a
business use case, rather than a system use case.

! Handle Returns

" OK with the boss. Seems like an EBP. Size is good.

! Log In

" Boss not happy if this is all you do all day!

! Move Piece on Game Board

" Single step—fails the size test.

Reasonable Violations of the Tests

Although the majority of use cases identified and analyzed for an application
should satisfy the tests, exceptions are common.

see the use case
“include” relation-
ship for more on
linking subfunction
use cases p. 494

It is sometimes useful to write separate subfunction-level use cases represent-
ing subtasks or steps within a regular EBP-level use case. For example, a sub-
task or extension such as “paying by credit” may be repeated in several base use
cases. If so, it is desirable to separate this into its own use case, even though it
does not really satisfy the EBP and size tests, and link it to several base use
cases, to avoid duplication of the text.

Authenticate User may not pass the Boss test, but be complex enough to warrant
careful analysis, such as for a “single sign-on” feature.

6.17 Applying UML: Use Case Diagrams

The UML provides use case diagram notation to illustrate the names of use
cases and actors, and the relationships between them (see Figure 6.3).6

A common sign of a novice (or academic) use case modeler is a preoccupation
with use case diagrams and use case relationships, rather than writing text.

Use case diagrams and use case relationships are secondary in use case work.
Use cases are text documents. Doing use case work means to write text.

6. “Cash In” is the act of a cashier arriving with a drawer insert with cash, logging in,
and recording the cash amount in the drawer insert.

UML and Patterns.book Page 89 Thursday, September 16, 2004 9:48 PM

6 – USE CASES

90

World-class use case experts such as Fowler and Cockburn, among others, down-
play use case diagrams and use case relationships, and instead focus on writing.
With that as a caveat, a simple use case diagram provides a succinct visual con-
text diagram for the system, illustrating the external actors and how they use
the system.

Figure 6.3 Partial use case context diagram.

A use case diagram is an excellent picture of the system context; it makes a good
context diagram, that is, showing the boundary of a system, what lies outside
of it, and how it gets used. It serves as a communication tool that summarizes
the behavior of a system and its actors. A sample partial use case context dia-
gram for the NextGen system is shown in Figure 6.3.

NextGen POS

Manage Users

. . .

Cashier

System

Administrator

actor

use case

communicationsystem boundary

Payment

Authorization

Service

«actor»

Tax Calculator

«actor»

Accounting

System

alternate

notation for

a computer

system actor

«actor»

HR System

Cash In

«actor»

Sales Activity

System

Manage Security

Analyze Activity

Customer

Manager

Process Sale

Handle Returns

Guideline

Draw a simple use case diagram in conjunction with an actor-goal list.

UML and Patterns.book Page 90 Thursday, September 16, 2004 9:48 PM

91

APPLYING UML: USE CASE DIAGRAMS

Guideline: Diagramming

Figure 6.4 offers diagram advice. Notice the actor box with the symbol «actor».
This style is used for UML keywords and stereotypes, and includes guillemet
symbols—special single-character brackets («actor», not <<actor>>) most widely
known by their use in French typography to indicate a quote.

Figure 6.4 Notation suggestions.

To clarify, some prefer to highlight external computer system actors with an
alternate notation, as illustrated in Figure 6.5.

Figure 6.5 Alternate actor notation.

Guideline: Downplay Diagramming, Keep it Short and Simple

To reiterate, the important use case work is to write text, not diagram or focus
on use case relationships. If an organization is spending many hours (or worse,

NextGen

Process Sale

. . .
Cashier

Show computer system actors
with an alternate notation to
human actors.

primary actors on
the left

supporting actors
on the right

For a use case context
diagram, limit the use cases to
user-goal level use cases.

«actor»
Payment

Authorization
Service

NextGen

Process Sale

«system»
Payment

Authorization
Service

...

«actor»
Payment

Authorization
Service

Some UML alternatives to
illustrate external actors that are
other computer systems.

The class box style can be used
for any actor, computer or
human. Using it for computer
actors provides visual
distinction.

Payment
Authorization

Service

UML and Patterns.book Page 91 Thursday, September 16, 2004 9:48 PM

6 – USE CASES

92

days) working on a use case diagram and discussing use case relationships,
rather than focusing on writing text, effort has been misplaced.

6.18 Applying UML: Activity Diagrams

UML activity
diagrams p. 477

The UML includes a diagram useful to visualize workflows and business pro-
cesses: activity diagrams. Because use cases involve process and workflow anal-
ysis, these can be a useful alternative or adjunct to writing the use case text,
especially for business use cases that describe complex workflows involving
many parties and concurrent actions.

6.19 Motivation: Other Benefits of Use Cases? Requirements in
Context

motivation p. 64 A motivation for use cases is focusing on who the key actors are, their goals, and
common tasks. Plus, in essence, use cases are a simple, widely-understood form
(a story or scenario form).

Another motivation is to replace detailed, low-level function lists (which were
common in 1970s traditional requirements methods) with use cases. These lists
tended to look as follows:

As implied by the title of the book Uses Cases: Requirements in Context [GK00],
use cases organize a set of requirements in the context of the typical scenarios of
using a system. That’s a good thing—it improves cohesion and comprehension to
consider and group requirements by the common thread of user-oriented scenar-
ios (i.e., use cases). In a recent air traffic control system project: the require-
ments were originally written in the old-fashioned function list format, filling
volumes of incomprehensible, unrelated specifications. A new leadership team
analyzed and reorganized the massive requirements primarily by use cases.
This provided a unifying and understandable way to pull the requirements
together—into stories of requirements in context of use.

ID Feature

FEAT1.9 The system shall accept entry of item identifiers.

.

FEAT2.4 The system shall log credit payments to the accounts receivable
system.

UML and Patterns.book Page 92 Thursday, September 16, 2004 9:48 PM

93

EXAMPLE: MONOPOLY GAME

Supplementary
Specification p. 104

To reiterate, however, use cases are not the only necessary requirements arti-
fact. Non-functional requirements, report layouts, domain rules, and other hard-
to-place elements are better captured in the UP Supplementary Specification.

High-Level System Feature Lists Are Acceptable

Vision p. 109 Although detailed function lists are undesirable, a terse, high-level feature list,
called system features, added to a Vision document can usefully summarize sys-
tem functionality. In contrast to 50 pages of low-level features, a system features
list includes only a few dozen items. It provides a succinct summary of function-
ality, independent of the use case view. For example:

Summary of System Features

! sales capture

! payment authorization (credit, debit, check)

! system administration for users, security, code and constants tables, and so on

! …

When Are Detailed Feature Lists Appropriate Rather than Use Cases?

Sometimes use cases do not really fit; some applications cry out for a feature-
driven viewpoint. For example, application servers, database products, and
other middleware or back-end systems need to be primarily considered and
evolved in terms of features (“We need Web Services support in the next
release”). Use cases are not a natural fit for these applications or the way they
need to evolve in terms of market forces.

6.20 Example: Monopoly Game

The only significant use case in the Monopoly software system is Play Monopoly
Game—even if it doesn’t pass the Boss Test! Since the game is run as a com-
puter simulation simply watched by one person, we might say that person is an
observer, not a player.

Supplementary
Specification p. 104

This case study will show that use cases aren’t always best for behavioral
requirements. Trying to capture all the game rules in the use case format is
awkward and unnatural. Where do the game rules belong? First, more gener-
ally, they are domain rules (sometimes called business rules). In the UP,
domain rules can be part of the Supplementary Specification (SS). In the SS
“domain rules” section there would probably be a reference to either the official
paper booklet of rules, or to a website describing them. In addition, there may be
a pointer to these rules from the use case text, as shown below.

UML and Patterns.book Page 93 Thursday, September 16, 2004 9:48 PM

6 – USE CASES

94

Figure 6.6 Use case diagram (“context diagram”) for Monopoly system.

The text for this use case is very different than the NextGen POS problem, as it
is a simple simulation, and the many possible (simulated) player actions are
captured in the domain rules, rather than the Extensions section.

Use Case UC1: Play Monopoly Game

Scope: Monopoly application
Level: user goal
Primary Actor: Observer
Stakeholders and Interests:
– Observer: Wants to easily observe the output of the game simulation.

Main Success Scenario:
1. Observer requests new game initialization, enters number of players.
2. Observer starts play.

3. System displays game trace for next player move (see domain rules, and “game
trace” in glossary for trace details).

Repeat step 3 until a winner or Observer cancels.

Extensions:
*a. At any time, System fails:

(To support recovery, System logs after each completed move)
1. Observer restarts System.
2. System detects prior failure, reconstructs state, and prompts to continue.
3. Observer chooses to continue (from last completed player turn).

Special Requirements:
– Provide both graphical and text trace modes.

UML and Patterns.book Page 94 Thursday, September 16, 2004 9:48 PM

95

PROCESS: HOW TO WORK WITH USE CASES IN ITERATIVE METHODS?

6.21 Process: How to Work With Use Cases in Iterative Methods?

Use cases are central to the UP and many other iterative methods. The UP
encourages use-case driven development. This implies:

! Functional requirements are primarily recorded in use cases (the Use-Case
Model); other requirements techniques (such as functions lists) are second-
ary, if used at all.

! Use cases are an important part of iterative planning. The work of an itera-
tion is—in part—defined by choosing some use case scenarios, or entire use
cases. And use cases are a key input to estimation.

! Use-case realizations drive the design. That is, the team designs collabo-
rating objects and subsystems in order to perform or realize the use cases.

! Use cases often influence the organization of user manuals.

! Functional or system testing corresponds to the scenarios of use cases.

! UI “wizards” or shortcuts may be created for the most common scenarios of
important use cases to ease common tasks.

How to Evolve Use Cases and Other Specifications Across the Iterations?

This section reiterates a key idea in evolutionary iterative development: The
timing and level of effort of specifications across the iterations. Table 6.1 pre-
sents a sample (not a recipe) that communicates the UP strategy of how require-
ments are developed.

Note that a technical team starts building the production core of the system
when only perhaps 10% of the requirements are detailed, and in fact, the team
deliberately delays in continuing with deep requirements work until near the
end of the first elaboration iteration.

This is a key difference between iterative development and a waterfall process:
Production-quality development of the core of a system starts quickly, long
before all the requirements are known.

Observe that near the end of the first iteration of elaboration, there is a second
requirements workshop, during which perhaps 30% of the use cases are written
in detail. This staggered requirements analysis benefits from the feedback of
having built a little of the core software. The feedback includes user evaluation,
testing, and improved “knowing what we don’t know.” The act of building soft-
ware rapidly surfaces assumptions and questions that need clarification.

In the UP, use case writing is encouraged in a requirements workshop. Figure
6.7 offers suggestions on the time and space for doing this work.

UML and Patterns.book Page 95 Thursday, September 16, 2004 9:48 PM

6 – USE CASES

96

Table 6.1 Sample requirements effort across the early iterations; this is not a
recipe.

When Should Various UP Artifact (Including Use Cases) be Created?

Table 6.2 illustrates some UP artifacts, and an example of their start and refine-
ment schedule. The Use-Case Model is started in inception, with perhaps only
10% of the architecturally significant use cases written in any detail. The major-
ity are incrementally written over the iterations of the elaboration phase, so
that by the end of elaboration, a large body of detailed use cases and other
requirements (in the Supplementary Specification) are written, providing a
realistic basis for estimation through to the end of the project.

Discipline Artifact Comments and Level of Requirements Effort
Incep

1 week
Elab 1

4 weeks
Elab 2

4 weeks
Elab 3

3 weeks
Elab 4

3 weeks
Requirements Use-Case

Model
2-day require-
ments work-
shop. Most use
cases identified
by name, and
summarized in a
short paragraph.

Pick 10% from
the high-level
list to analyze
and write in
detail. This 10%
will be the most
architecturally
important, risky,
and high-busi-
ness value.

Near the end of
this iteration,
host a 2-day
requirements
workshop.
Obtain insight
and feedback
from the imple-
mentation work,
then complete
30% of the use
cases in detail.

Near the end of
this iteration,
host a 2-day
requirements
workshop.
Obtain insight
and feedback
from the imple-
mentation work,
then complete
50% of the use
cases in detail.

Repeat, com-
plete 70% of all
use cases in
detail.

Repeat with the
goal of 80–90% of
the use cases
clarified and
written in detail.

Only a small por-
tion of these
have been built
in elaboration;
the remainder
are done in con-
struction.

Design Design Model none Design for a
small set of high-
risk architectur-
ally significant
requirements.

repeat repeat Repeat. The high
risk and archi-
tecturally signifi-
cant aspects
should now be
stabilized.

Implementa-
tion

Implementa-
tion Model
(code, etc.)

none Implement these. Repeat. 5% of the
final system is
built.

Repeat. 10% of
the final system
is built.

Repeat. 15% of
the final system
is built.

Project Man-
agement

SW Develop-
ment Plan

Very vague esti-
mate of total
effort.

Estimate starts
to take shape.

a little better… a little better… Overall project
duration, major
milestones,
effort, and cost
estimates can
now be rationally
committed to.

UML and Patterns.book Page 96 Thursday, September 16, 2004 9:48 PM

97

PROCESS: HOW TO WORK WITH USE CASES IN ITERATIVE METHODS?

Table 6.2 Sample UP artifacts and timing. s - start; r - refine

Figure 6.7 Process and setting context for writing use cases.

Discipline Artifact Incep. Elab. Const. Trans.
Iteration# I1 E1..En C1..Cn T1..T2

Business Modeling Domain Model s
Requirements Use-Case Model s r

Vision s r
Supplementary Specification s r
Glossary s r

Design Design Model s r
SW Architecture Document s

January February

Use Case: Capture a Sale

. . .

Main Success Scenario:

1. ...

2. ...

3. ...

Extensions:

Use Case: Handle Returns

. . .

Main Success Scenario:

1. ...

2. ...

3. ...

Extensions:

When

Once during inception. Short; do not try to

define or polish all requirements.

Several times during elaboration iterations.

Where

At a requirements workshop.

Who

Many, including end users and developers, will play

the role of requirements specifier, helping to write

use cases.

Led by system analyst who is responsible for

requirements definition.

How: Tools

Software:

· For use case text, use a web-enabled requirements tool

that integrates with a popular word processor.

For use case diagrams, a UML CASE tool.

Hyperlink the use cases; present them on the project website.

Hardware: Use two projectors attached to dual video cards and

set the display width double to improve the spaciousness of the

drawing area or display 2 adjacent word processor windows .

Developer

Customer

System

Analyst

End User

Two adjacent projections.

Software

Architect

UML and Patterns.book Page 97 Thursday, September 16, 2004 9:48 PM

6 – USE CASES

98

How to Write Use Cases in Inception?

The following discussion expands on the information in Table 6.1.

Not all use cases are written in their fully dressed format during the inception
phase. Rather, suppose there is a two-day requirements workshop during the
early NextGen investigation. The earlier part of the day is spent identifying
goals and stakeholders, and speculating what is in and out of scope of the
project. An actor-goal-use case table is written and displayed with the computer
projector. A use case context diagram is started. After a few hours, perhaps 20
use cases are identified by name, including Process Sale, Handle Returns, and so
on. Most of the interesting, complex, or risky use cases are written in brief for-
mat, each averaging around two minutes to write. The team starts to form a
high-level picture of the system’s functionality.

After this, 10% to 20% of the use cases that represent core complex functions,
require building the core architecture, or that are especially risky in some
dimension are rewritten in a fully dressed format; the team investigates a little
deeper to better comprehend the magnitude, complexities, and hidden demons
of the project through deep investigation of a small sample of influential use
cases. Perhaps this means two use cases: Process Sale and Handle Returns.

How to Write Use Cases in Elaboration?

The following discussion expands on the information in Table 6.1.

This is a phase of multiple timeboxed iterations (for example, four iterations) in
which risky, high-value, or architecturally significant parts of the system are
incrementally built, and the “majority” of requirements identified and clarified.
The feedback from the concrete steps of programming influences and informs
the team’s understanding of the requirements, which are iteratively and adap-
tively refined. Perhaps there is a two-day requirements workshop in each itera-
tion—four workshops. However, not all use cases are investigated in each
workshop. They are prioritized; early workshops focus on a subset of the most
important use cases.

Each subsequent short workshop is a time to adapt and refine the vision of the
core requirements, which will be unstable in early iterations, and stabilizing in
later ones. Thus, there is an iterative interplay between requirements discovery,
and building parts of the software.

During each requirements workshop, the user goals and use case list are
refined. More of the use cases are written, and rewritten, in their fully dressed
format. By the end of elaboration, “80–90%” of the use cases are written in
detail. For the POS system with 20 user-goal level use cases, 15 or more of the
most complex and risky should be investigated, written, and rewritten in a fully
dressed format.

Note that elaboration involves programming parts of the system. At the end of
this step, the NextGen team should not only have a better definition of the use
cases, but some quality executable software.

UML and Patterns.book Page 98 Thursday, September 16, 2004 9:48 PM

99

HISTORY

How to Write Use Cases in Construction?

The construction phase is composed of timeboxed iterations (for example, 20
iterations of two weeks each) that focus on completing the system, once the risky
and core unstable issues have settled down in elaboration. There may still be
some minor use case writing and perhaps requirements workshops, but much
less so than in elaboration.

Case Study: Use Cases in the NextGen Inception Phase

As described in the previous sections, not all use cases are written in their fully
dressed form during inception. The Use-Case Model at this phase of the case
study could be detailed as follows:

6.22 History

The idea of use cases to describe functional requirements was introduced in
1986 by Ivar Jacobson [Jacobson92], a main contributor to the UML and UP.
Jacobson’s use case idea was seminal and widely appreciated. Although many
have made contributions to the subject, arguably the most influential and coher-
ent next step in defining what use cases are and how to write them came from
Alistair Cockburn (who was trained by Jacobson), based on his earlier work and
writings stemming from 1992 onwards [e.g., Cockburn01].

6.23 Recommended Resources

The most popular use-case guide, translated into several languages, is Writing
Effective Use Cases [Cockburn01].7 This has emerged with good reason as the
most widely read and followed use-case book and is therefore recommended as a
primary reference. This introductory chapter is consequently based on and con-
sistent with its content.

Fully Dressed Casual Brief

Process Sale
Handle Returns

Process Rental
Analyze Sales Activity
Manage Security
…

Cash In
Cash Out
Manage Users
Start Up
Shut Down
Manage System Tables
…

7. Note that Cockburn rhymes with slow burn.

UML and Patterns.book Page 99 Thursday, September 16, 2004 9:48 PM

6 – USE CASES

100

Patterns for Effective Use Cases by Adolph and Bramble in some ways picks up
where Writing leaves off, covering many useful tips—in pattern format—related
to the process of creating excellent use cases (team organization, methodology,
editing), and how to better structure and write them (patterns for judging and
improving their content and organization).

Use cases are usually best written with a partner during a requirements work-
shop. An excellent guide to the art of running a workshop is Requirements by
Collaboration: Workshops for Defining Needs by Ellen Gottesdiener.

Use Case Modeling by Bittner and Spence is another quality resource by two
experienced modelers who also understand iterative and evolutionary develop-
ment and the RUP, and present use case analysis in that context.

“Structuring Use Cases with Goals” [Cockburn97] is the most widely cited paper
on use cases, available online at alistair.cockburn.us.

Use Cases: Requirements in Context by Kulak and Guiney is also worthwhile. It
emphasizes the important viewpoint—as the title states—that use cases are not
just another requirements artifact, but are the central vehicle that drives
requirements work.

UML and Patterns.book Page 100 Thursday, September 16, 2004 9:48 PM

